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a b s t r a c t

An extended surface modeling concept (electrochemical fin) is applied to charge transport within the
SOFC electrode microstructure using an analytical modeling approach analogous to thermal fin analysis.
This model is distinct from similar approaches applied to SOFC electrode microstructure in its application
of a governing equation that allows for variable cross-section geometry. The model presented is capa-
ble of replicating experimentally observed electrode behavior inclusive of sensitivity to microstructural
geometry, which stands in contrast to existing models that apply governing equations analogous to a
constant cross-section thermal fin equation. Insights learned from this study include: the establishment
of a suite of dimensionless parameters and performance metrics that can be applied to assess electrode
microstructure, the definition of microstructure-related transport regimes relevant to electrode design,
and correlations that allow performance predictions for electrodes that provide cell structural support.
lectrode microstructure Of particular note, the variable cross-section modeling approach motivates the definition of a sinter-
ing quality parameter that quantifies the degree of constriction within the conducting network of the
electrode, a phenomenon that exerts influence over electrode polarization. One-dimensional models are
presented for electrochemical fins of several cross-sectional geometries with the ultimate goal of devel-
oping a general tool that enables the prompt performance evaluation of electrode microstructures. Such
a tool would facilitate SOFC microstructural design by focusing more detailed modeling efforts on the

uctur
most promising microstr

. Introduction

The successful design and deployment of solid oxide fuel cells
SOFC) systems within a sustainable energy infrastructure is an
nherently multi-scale problem that may benefit from the delib-
rate design of fuel cell components at the nano- and micro-scales
1]. A variety of modeling approaches exist for the detailed explo-
ation of electrochemistry and transport at these scales. While
etailed microstructural models serve as powerful design tools, the
ssociated high computational costs suggest intensive modeling is
est reserved for the optimization of promising microstructural
esign candidates. Thus, the development of simplified models

hat can effectively screen candidate designs is warranted. One
uch approach involves the application of extended surface (fin)
odels to the description of charge transport within SOFC compo-

ents. Several existing models apply equations for the description
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ngineering, 191 Auditorium Road, Unit 3139, Storrs, CT 06269-3139, United States.
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of charge transport within SOFC electrodes that are similar to the
governing equation for a constant cross-section thermal fin [2–8].
Other works apply extended surfaces that are modeled as a means
of replicating electrode behavior. These approaches include analyt-
ical [3,8,9] and numerical models [2,4,5,7,8].

An early example of an SOFC electrode model that uses a govern-
ing equation comparable to the thermal fin equation can be found in
studies of electrode resistance performed by Kenjo et al. [9,10]. The
analysis presented by Kenjo et al. [9] applied a thin film model to
describe electrode performance that followed models of electrode
operation in liquid electrolyte fuel cells. This model treated the
electrolyte phase as a thin film lining the pores of the electrode and
was cast in terms of a local polarization with charge transfer resis-
tance and microstructural geometry lumped into a single interfacial
impedance parameter. Microstructural geometry was introduced
to the model through the pore radius, which represents an inver-
sion of more recent approaches that focus on the microstructure of

solid phases. While details of microstructural influence were not
provided, Kenjo et al. did provide some key insights on electrode
operation including demonstration of: electrode types for which
the thin film model is insufficient (e.g., poorly sintered electrodes),
limits for polarization resistance based on electrode thickness, and

dx.doi.org/10.1016/j.jpowsour.2010.12.103
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:wchiu@engr.uconn.edu
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Nomenclature

A area (m2)
a slope of variable cross-section fin profile
i current (A)
L length of fin segment (m)
Lact electrode active length (m)
Lf total fin length or electrode thickness (m)
P perimeter of constant cross-section fin (m)
R area specific resistance (� m2)
r fin radius (m)
SQ sintering quality
V voltage (V)

Greek symbols
εf fin effectiveness
�f fin efficiency
� resistivity (� m)
� conductivity (S m−1)
ϕ potential difference (V)

Subscripts
b quantity evaluated at fin base
c quantity related to fin cross-section
ct charge transfer
el electronic
io ionic
pol polarization
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s quantity related to fin surface
t quantity evaluated at fin tip

he benefits of increased electrode thickness with respect to reduc-
ng polarization resistance.

Electrode charge transport models following the work of Kenjo
t al. largely shifted focus to the analysis of charge transport in
he solid phases [2–8,11], foregoing a strict thin film interpretation
nd applying comparable equations to extended surfaces. Tanner
t al. [2] presented an extended surface model of an SOFC electrode
hat focused on solid state charge transport within the electrolyte
hase. In contrast to the work of Kenjo et al., this model treated
he electrolyte as the extended surface and the electrocatalyst as
hin film coating the electrolyte. A charge transfer resistance gov-
rned transport between the electrolyte and electrocatalyst phases.
governing equation similar to the thermal fin equation was devel-
ped assuming a constant potential within the electrocatalyst layer,
nd the general solution developed bears a strong resemblance to
eneral solutions of the thermal fin problem [2]. Ultimately, the
odel developed enabled consideration of the influence of elec-

rode porosity and the thickness of the electrode and electrolyte
egions. As in the work of Kenjo et al., thicker electrodes were
hown to be beneficial from the standpoint of reducing effective
harge transfer resistance. The model presented also addressed
he influence of electrochemically active regions at the electrolyte
nterface. Furthermore, using a numerical solution, the role of
harge transfer resistance and two-dimensional transport were
xplored. In addition to the work of Tanner et al. the extended sur-
ace concept has been applied to describe charge transport within
OFC cathodes [12] and in the development of equivalent circuit
odels for MIEC electrodes [13].

Costamagna et al. [3,11] presented a version of the extended

urface model in which the potential of the electronic conduct-
ng phase was allowed to vary. Using a linearized form of the
utler–Volmer equation to describe surface exchange and several
imensionless parameters and variables, they solved an ordi-
ources 196 (2011) 4695–4704

nary differential equation comparable to the fin equation that
ultimately describes the overpotential within an SOFC electrode
composed of packed spheres. Performance in terms of polariza-
tion resistance was explored as a function of electrode thickness
and composition in relation to percolation thresholds and parti-
cle sizes. Optimum compositions were found near the percolation
thresholds for the electronic conducting phase. The work of Costa-
magna et al. is one example of an array of packed sphere models
that apply percolation theory to study the impact of microstruc-
ture on SOFC transport phenomena [4–8,14–16]. Such models
typically require either the application of effective conductivities
[4,5,14] or the numerical solution of random resistance networks
[7,8,15,16]. Of particular note, the work of Sunde’s drew upon per-
colation theory and the numerical solution of three-dimensional
resistor networks to simulate the conductivity and polarization
resistance of SOFC electrodes as functions of electrode compo-
sition [7,8]. The general model formulation and dimensionless
parameters applied in Sunde’s exploration of polarization resis-
tance are comparable to those applied later by Costamagna et al.
[3,8].

In addition to the solution of resistor networks, several other
numerical techniques have been applied to describe more detailed
transport than allowed by the simplified cases addressed by
analytical models. Cannarozzo et al. [5] revisit the work of Costa-
magna et al. using a more detailed, composition dependent form
of the Butler–Volmer equation. The equations they established
were solved using a collocation method, and the resulting model
demonstrated trade-offs that exist between activation and con-
centration losses that can be linked to particle size. Tanner et al.
[2] used a two-dimensional finite difference method to estab-
lish more detailed potential distributions within an extended YSZ
structure that served as a benchmark for their simplified one-
dimensional model. Fleig and Maier [12] solved a similar problem
for charge transport within the cathode using finite element anal-
ysis to characterize charge transport in structures resembling an
array of pin fins. This model allowed for the establishment of
cathode operational regimes that distinguished the level of elec-
trochemical activity within the structure. Finally, Zhu and Kee
[4] developed a detailed set of differential algebraic equations
(DAEs) describing mass, charge and energy transport within the
electrodes and electrolyte of an SOFC. This system of equations
was solved using a DAE solution software. Trade-offs between
activation and concentration losses were demonstrated to occur
based on varying particle sizes, and polarization was shown to
primarily occur in the ionic conducting phase. The electronic
conducting phase was found to have almost constant overpoten-
tial.

This article addresses the application of the extended sur-
face modeling concept to charge transport within SOFC electrodes
using an analytical modeling approach that focuses on the solid,
ionic conducting phase in the electrode. While this model varies
from the thin film approach in terms of the phase of interest,
parallels between the approaches are strong enough to warrant
cognizance of thin film model critiques that may apply. Most
notably thin film models have been considered to not fully account
for several composition related phenomena that have been wit-
nessed in electrode experiments [6]. The present work attempts
to address one such issue, connectivity of the ionic conducting
phase, by developing an extended surface model that allows for
variable cross-section geometry. When applied to periodic struc-
tures, this allowance enables varying degrees of connectedness.

The model presented also demonstrates sensitivity to microstruc-
tural geometric details without a reliance on effective conductivity
parameters. This sensitivity stands in contrast to many exist-
ing models, even several based on percolation theory, that apply
governing equations analogous to constant cross-section thermal
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sectional area and its variation within the microstructure play in the
ig. 1. Basic geometry of a constant cross-section electrochemical fin following
anner et al. [2].

n equations [3,5–9]. Such approaches may neglect the influ-
nce that microstructural geometry plays in electrode performance
ecause they do not fully account for variations in geometry
ithin their fundamental equations. The enhanced sensitivity in

he models developed is achieved by extending constant cross-
ection modeling approaches to variable cross-section equations.
ne-dimensional models are developed for electrochemical fins
f several cross-sectional geometries with the ultimate goal of
eveloping a general tool that enables the prompt performance
valuation of electrode microstructures. Such a tool would facilitate
OFC microstructural design by focusing more detailed modeling
fforts on the most promising microstructures.

. Model formulation

.1. Analytical models

The analytical model presented is developed for an extended
urface of ion conducting material subject to charge transfer. The
overning equation for this system is referred to herein as the
n equation. Following the work of Tanner et al. [2] a basic case

or the fin equation was developed using the geometry shown in
ig. 1. Arrows indicate flux of oxygen ions, and the currents flowing
cross each boundary are defined in Eqs. (1)–(3). Several key sim-
lifying assumptions are applied in this derivation. Most notably,
ransport is assumed to be one-dimensional across the thickness
f the electrode. Gas transport is assumed to be fast, such that
eactant composition does not vary along the surface of the geom-
try considered. This condition allows for linear treatment of the
utler–Volmer equation in the form of a single charge transfer resis-
ance parameter. Finally, two assumptions are applied regarding
he physics of charge transport. First, charge transport is assumed
o be primarily ionic with constant potential assumed in the elec-
ronic conducting phase. This assumption may be relaxed, as done
n studies based on percolation theory [3–5]. However, it is inter-
sting to note that in the event that �io » �el, effective conductivities
pplied in such models [3] will be dominated by the ionic conduct-
ng phase. Furthermore, the detailed modeling results of Zhu and
ee [4] predict negligible variation in electronic potentials across

he substantial portions of the electrodes. Second, the effects of

pace charge regions near grain boundaries on ionic transport are
eglected in the present work. These space charge regions may
xert influence on electrode performance at lower temperatures
r for electrodes composed of smaller particles (grain size less than
ources 196 (2011) 4695–4704 4697

1 �m) [17], and may be considered in subsequent works.

ix+�x = −�ioAc
Vio(x) − Vio(x + �x)

�x
(1)

ix−�x = −�ioAc
Vio(x − �x) − Vio(x)

�x
(2)

isurf = dAs
1

Rct
[�Veq − (Vio(x) − Vel(x))] (3)

Here, �Veq is defined as the equilibrium potential for the elec-
trode [5]. If Vel(x) is held constant across the electrode thickness
a reference potential can be defined as shown in Eq. (4). Assuming
a constant cross-section the surface current can be expressed in
terms of this reference potential.

V0 = �Veq + Vel (4)

isurf = −P�x
1

Rct
[Vio(x) − V0] (5)

To develop the ordinary differential equation (ODE) for the basic
case, a charge balance is established similar to the form applied by
Tanner et al. [2]. As the width of the differential element approaches
zero this balance becomes the ODE shown in Eq. (7).

−�ioAc
Vio(x) − Vio(x + �x)

�x
− P�x

1
Rct

[
Vio(x) − V0

]
= −�ioAc

Vio(x − �x) − Vio(x)
�x

(6)

−�ioAc
d2Vio(x)

dx2
+ P

1
Rct

Vio(x) = P
1

Rct
V0 (7)

To fully leverage the fin analogy, a potential difference is defined
and the equation is recast in the standard fin equation form. This
potential difference, shown in Eq. (8), is analogous to expressing
the fin temperature distribution of a find undergoing heat transfer
in terms of the difference between the fin temperature and the base
temperature.

ϕ(x) = Vio(x) − V0 (8)

d2ϕ

dx2
−

(
P

Ac

)
1

�ioRct
ϕ = 0 (9)

The term separated by parentheses in Eq. (9) is highlighted
as a geometric parameter for the fin. Specifically, it is the ratio
of the perimeter to the cross-sectional area that is commonly
encountered in thermal fin analysis. A key distinction can be drawn
between this form of the equation and the lumped parameter
approach applied by Kenjo et al. [9]. Specifically, the form shown in
Eq. (9) allows for separating microstructural parameters and physi-
cal constants associated with charge transport. The general solution
takes the form shown in Eq. (10), with the constant m defined in
Eq. (11). The constants that complete the particular solution will be
discussed shortly.

ϕ(x) = C1 exp(mx) − C2 exp(−mx) (10)

m =
√

P

Ac

1
�ioRct

(11)

As noted, equations following the form of Eq. (9) have
been explored in electrode models based on percolation the-
ory [3,5–8,11]. However, by implementing constant cross-section
equations like Eq. (9) these works tacitly neglect the role that cross-
equation governing charge transport. In the present work a variable
cross-section form of this governing equation and its solution are
presented for geometries based on a conical frustum building block.
This geometry is shown in its basic a periodic forms in Fig. 2. For
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Fig. 2. Variable cross-section pin fin structures with geometry of (a) a co

he case of a variable cross-section fin the governing ODE, Eq. (7),
an be recast in the general form of Eq. (12). The general solution
f Eq. (12) for the conical geometry shown in Fig. 2a is given in Eq.
13), where I1 and K1 are first order modified Bessel’s functions of
he first and second kind, respectively. The relevant parameters for
q. (13) are defined in Eqs. (14) and (15).

d2ϕ

dx2
+ 1

Ac

dAc

dx

dϕ

dx
− 1

�ioRctAc

dAs

dx
ϕ = 0 (12)

[r(x)] = 1√
r(x)

[
C1I1(ˇ

√
r(x)) + C2K1(ˇ

√
r(x))

]
(13)

(x) = rb − ax (14)

=

√
8

�ioRct

√
1 + a2

a2
(15)

For non-periodic geometries (Figs. 1 and 2a) the constants C1
nd C2 in Eqs. (10) and (13) can be readily defined for an array
f boundary conditions. In the present work a constant potential,
b, is fixed at the base of the structure, and active charge transfer

s assumed at the tip of the structure. This latter boundary condi-
ion is chosen in lieu of the more common insulated tip condition
ecause the assumption of an insulated tip precludes the possibil-

ty of charge being consumed at the end of the fin structure. For a
hort percolating structure connected to the electrolyte like those
llustrated by Sunde [8] it is possible that charge may be trans-
orted to and consumed at the tip of the structure. Removing these
tructures from consideration is not desired. Furthermore, for a suf-
ciently thick electrode (i.e., a long fin) charge will be completely
onsumed along the fin perimeter and does not reach the tip of the
n. Thus for sufficiently long fins the active tip will be effectively

nsulated, and implementing an active tip condition is considered
o mimic electrochemically active, connected ion conducting struc-
ures that do not extend across the full thickness of the electrode,
ike those illustrated by Sunde [8]. The constants for the particular
olution of Eq. (7) corresponding to these boundary conditions are
hown in Eqs. (16) and (17). Similarly, the constants for the partic-
lar solution of Eq. (12) subject to these conditions are given in Eqs.
18) and (19).

1 = ϕb exp(−mLf )((1/Rct) − �iom)

((1/Rct) − �iom) exp(−mLf ) −
(

(1/Rct) + �iom
)

exp(mLf )
(16)

2 = ϕb − C1 (17)

1 = ϕb
√

rb[r−1/2
t K1(ˇ

√
rt ) − (ˇ/2)K0(ˇ

√
rt )]

I1(ˇ
√

rb)[r−1/2
t K1(ˇ

√
rt ) − (ˇ/2)K0(ˇ

√
rt )] − K1(ˇ

√
rb)[r−1/2

t I1(ˇ
√

rt ) − (ˇ/2)I0(ˇ
√

rt )]
(18)

2 = ϕb
√

rb − C1I1(ˇ
√

rb)
K1(ˇ

√
rb)

(19)
frustum and (b) a periodic structure composed of iterated conical frusta.

For periodic structures (Fig. 2b), the definition of the appropri-
ate constants is not as straightforward. However, modeling of such
structures can be achieved by recognizing that each of the n seg-
ments comprising the structure obeys the general solution shown
in Eq. (13). A system of 2n equations can then be established by
applying the base and tip boundary conditions and invoking con-
straints based on equipotential and current conservation at interior
segment boundaries (at x = 2L, 3L, . . ., (n − 1)L). Subsequent solution
of this system of equations yields the values of the constants for the
n particular solutions.

Limiting cases for the one-dimensional transport model pre-
sented above arise primarily for poorly sintered electrodes and
electrodes composed of small particles. Poorly sintered geometries
with small interparticle neck sizes may exhibit multi-dimensional
potential distributions. However, these variations are expected to
be small compared to bulk potential drops for electrodes with
thicknesses greater than a few particle sizes. Thus, thin poorly sin-
tered electrodes may be considered a limiting case for the model
presented. As noted, space charge effects that may exert greater
influence in electrodes composed of small particles and in lower
temperature operation also present a limiting case for the appli-
cability of the current form of the electrochemical fin model.
Incorporation of these effects may be addressed in subsequent
works.

2.2. Microstructural and performance parameters

Considering the complicated expressions involved in direct
implementation of the analytical solutions above, it is desirable to
develop some basic parameters that can be used to describe the
microstructure and predict the performance of an SOFC electrode.
Such parameters can be defined by first establishing a dimen-
sionless form of Eq. (12) (shown in Eq. (20)) using a normalized
potential, ϕ* = ϕ/ϕb, normalized length, x* = x/Lf, and two normal-
ized area terms, As

* = As/Ac,b and Ac
* = Ac/Ac,b.

d2ϕ∗

dx∗2
+ 1

A∗
c

dA∗
c

dx∗
dϕ∗

dx∗ − Lf

�ioRctA∗
c

dA∗
s

dx∗ ϕ∗ = 0 (20)

The first parameter developed from Eq. (20) is a resistivity ratio
(�io/�ct) based on the third term on the left-hand side. Similar forms
of this term have been previously defined by Sunde and Costam-
agna et al. [3,6,8]. These existing forms were defined based on the
triple-phase boundary (TPB) concentration in the electrode, instead
of using a direct relation to the microstructural cross-section and
surface areas applied in Eqs. (12) and (20) (e.g., (1/Ac)dAs/dx). Def-
erence is given to this latter analytical form in the present work
to minimize the use of empirical factors in the model. As indicated

in Eq. (21) the resistivity ratio compares the ionic resistivity of the
electrode and a charge transfer resistivity that depends on the elec-
trode thickness, the fin cross-sectional area and variation in the fin
surface area. This parameter is derived directly in producing the
dimensionless form of the governing equation. As an operator on
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he normalized potential term, it represents a dimensionless sur-
ace charge transfer coefficient that quantifies the balance between
he rate of conductive charge transfer through the solid structure
o the chemically active surface and the rate of charge transfer from
he chemically active surface. The ionic conductivity and cross-
ectional area terms reflect the influence of conduction within
he solid. Reducing either of these factors increases the influence
f conductive charge transfer. The charge transfer resistance and
hange in surface area reflect the role of surface charge transfer.
ncreasing the former reduces the rate of charge transfer from the
ctive surface, while increasing the latter provides gains in charge
ransfer relative to conduction. The length dependence seen in the
esistivity ratio reflects the increased surface charge transfer result-
ng from further extension of the active surface. For the conical
tructures shown in Fig. 2 this resistivity ratio can be defined by
aking the average of the area terms over the segment length L, as
hown in Eq. (22).

�io

�ct
=

L2
f

�ioRct

1
Ac

dAs

dx
(21)

�io

�ct
=

L2
f

�ioRct

⎛
⎝1

L

L∫
0

1
Ac

dAs

dx
dx

⎞
⎠ = −2

L2
f

L�ioRct

√
1 + a2

a
ln

(
rt

rb

)
(22)

The introduction of the middle term on the left-hand side of
qs. (12) and (20) accounts for the additional influence variation
n cross-sectional geometry exerts on performance. This influence
an be described using a parameter that is herein defined as the
intering quality of the electrode microstructure, SQ. A poorly sin-
ered geometry is considered to have a relatively small neck radius
ompared to the particle radius [9,17], which would result in a high
alue for the coefficient (1/Ac)dAc/dx. Thus the sintering quality is
efined as the inverse of this coefficient to reflect the appropri-
te dependence on neck radius, Eq. (23). A constant cross-section
eometry would be considered as “perfectly sintered” and would
ave an infinite sintering quality. The sintering quality quantifies
he role that constrictions within the sintered geometry play in
ncreasing the ohmic losses within the electrode and can be readily
ast in terms of the conical geometries considered following the
pproach used for the resistivity ratio, as shown in Eq. (24).

Q =
[

Lf

Ac

dAc

dx

]−1

(23)

Q =

⎡
⎣ Lf

L

L∫
0

1
Ac

dAc

dx
dx

⎤
⎦

−1

=
[
−2

Lf

L
ln

(
rt

rb

)]−1

(24)

The resistivity ratio and sintering quality provide a basis for
escribing SOFC electrodes using microstructural geometry and
asic properties of the electrode, the ionic conductivity and charge
ransfer resistance. However, additional performance metrics are
eeded for the resistivity ratio and sintering quality to properly

acilitate electrode analysis and design. These metrics can be drawn
rom existing SOFC literature and by adapting parameters from
hermal fin analysis. Dimensionless currents have been applied as
oundary conditions in the analysis of composite electrodes [3,6].
n the present work, the analytical solutions developed have been
sed to define a dimensionless base current that describes the total
harge transferred across the electrode–electrolyte interface at the
ase of the electrochemical fin. The current can be expressed in
erms of the potential, ϕ, following Eq. (25), given in a general form
ources 196 (2011) 4695–4704 4699

for brevity.

dϕ∗

dx∗

∣∣∣
x∗=0

= Lf

ϕb

dϕ

dx

∣∣∣
x=0

(25)

Following the thermal fin example the efficiency, �f, and the
effectiveness, εf, can be defined for the electrochemical fin model
according to Eqs. (26) and (27). Here, Af represents the total surface
area of the fin, including the sides and tip. For the electrochemical
case the efficiency compares the total current conducted by the fin
to the ideal current that would be conducted by a constant voltage
fin held at the base voltage, ϕb. This metric allows for evaluation
of the conductive resistance for a given geometry, with a reduced
efficiency indicating greater ohmic losses attributed to microstruc-
tural geometry. A similar parameter was introduced by Costamagna
et al. [3], but was referred to as an effectiveness factor. The effec-
tiveness defined in the present work compares the total current
conducted by the fin to the current that would be conducted across
an unmodified surface. This metric essentially determines whether
a particular structure produces a significant impact when added to
an electrolyte surface. The effectiveness accounts for both the sur-
face charge transfer gained by adding the fin and the conductive
resistance within the fin.

�f = itot

(1/Rct)Af ϕb
(26)

εf = itot

(1/Rct)Abϕb
(27)

A final performance metric applied in the analysis of SOFC elec-
trodes is the polarization resistance, Rpol. This resistance is defined
as the total current density flowing across the electrode–electrolyte
interface divided by the potential at the same interface [9]. Inspec-
tion of Eq. (27) reveals that the polarization resistance can be
expressed in terms of the effectiveness.

Rpol = Rct

εf
(28)

In the present work the polarization resistance is used to
compare predictions made by the electrochemical fin models to
experimental measurements of the polarization resistance made
by Kenjo et al. [9]. In further analyses, deference is given to the
non-dimensional metrics defined above and this resistance is not
applied. However, noting that the dimensionless base current can
be cast in terms of the effectiveness (Eq. (29)) it can be seen that
the dimensionless base current and the polarization resistance are
inversely proportional. This relation may serve as a useful point of
reference for those better acquainted with the polarization resis-
tance.

dϕ∗

dx∗

∣∣∣
x∗=0

= εf Lf

�ioRct
⇒ dϕ∗

dx∗

∣∣∣
x∗=0

∝ 1
Rpol

(29)

The analytical models, dimensionless parameters and perfor-
mance metrics outlined above provide a simplified means of rapidly
assessing the impact of electrode microstructure on SOFC perfor-
mance. Among the assumptions applied it should be noted that the
influence of space charge and multidimensional transport require
further consideration. This is especially the case for poorly sintered
microstructures [17]. As noted, the incorporation of such effects
will be pursued in subsequent works.

3. Results and discussion
3.1. Comparison to experiments

The predictive capabilities of the analytical model developed for
SOFC microstructures were initially tested in comparison to exper-
imental data published by Kenjo et al. for electrodes of varying
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arameter k. Consideration of the perimeter to cross-sectional area ratio in a con-
tant cross-section model presents an improvement over lumped charge transfer
arameters.

ompositions (mixtures of erbia-doped bismuth oxide and plat-
num), resistivities and charge transfer characteristics [9]. This
omparison is shown in Fig. 3 for the case of an electrode simu-
ated with a constant cross-section cylindrical electrochemical fin

odel. It is clear that the model is capable of predicting the behavior
f these well-sintered electrodes. The model presented allows for
he incorporation of microstructural influence through the geome-
ry of the extended surface. In the constant cross-section case this
nfluence can be dictated by the ratio of the fin perimeter to cross-
ectional area (P/A ), a common metric seen in thermal fin analysis.
c

o separate this influence from the lumped parameter used by
enjo et al., a fixed charge transfer resistance of 0.6 � cm−2, and

he radius of the cylindrical fin was modified to produce the appro-
riate lumped parameter value. While the constant cross-section

ig. 4. Comparison of constant and variable cross-section electrochemical fin models t
lectrodes; fin geometries with little to no variation in cross-section represent well sintere
or poorly sintered structures the agreement in behavior is seen as strictly qualitative.
ources 196 (2011) 4695–4704

model can be seen to compare well with the experimental data of
Kenjo et al., it should be noted that these results still rely on modify-
ing the geometry to match an empirical fitting parameter. Thus the
agreement is achieved, demonstrating that the model is capable of
predicting the performance of electrochemical fins with constant
cross section.

Further exploration of the electrochemical fin approach can be
achieved by comparing model predictions to electrode experiments
shown in Fig. 4. Here electrodes noted by Kenjo et al. as well sin-
tered are simulated using the constant and variable cross-section
electrochemical fin approach, and electrodes noted as poorly sin-
tered are simulated using only a variable cross-section model. The
variable cross-section cases are simulated using periodic structures
composed of conical frusta (Fig. 2b). All cases examined apply a
base radius value of 2 �m, which for the constant cross-section
case provides a strong match to the experimental data. The well sin-
tered variable cross-section case applies a slightly smaller tip radius
of 1.75 �m for each conical unit, and the poorly sintered cases
apply tip radii of 0.2 �m and 0.125 �m. As with the cases shown in
Fig. 3, each case demonstrates the capability of the electrochem-
ical fin approach to account for the influence of microstructure
on electrode performance. For the variable cross-section case, this
influence is accounted for in both the charge transfer and ionic
transport terms of the governing equation (Eq. (12)). However, lim-
ited microstructural data was made available by Kenjo et al. for
the electrodes tested. More detailed investigations of SOFC elec-
trode microstructure are needed to verify these predictions, but
with the advent of advanced microstructural characterization tech-
niques such as X-ray computed tomography (XCT) and focused ion
beam-scanning electron microscopy (FIB-SEM) such direct verifi-
cation against real microstructures is possible [18–22].

While the direct experimental comparisons of Fig. 4 are primar-
ily qualitative, several key insights come to light from inspection
of the results. First and foremost it can be clearly seen that more
constricted, poorly sintered electrodes can be described by analyti-
within the equation governing charge transport. The accounting
for increased ohmic losses related to the higher degree of constric-
tion within the microstructure enables the model to produce the
“thickness effect” seen for electrodes that could not be discerned by

o experimental results from Kenjo et al. [9] for well sintered and poorly sintered
d structures while fins with drastic variations represent poorly sintered structures.
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ff exists in balancing ohmic losses incurred by constrictions in the microstructure.
he efficiency indicates well sintered geometries exhibit ohmic loss comparable to
onstant cross-section model predictions. However, overall polarization may show
ignificant differences, as indicated by the dimensionless base current.

he constant cross-section thin-film model [9]. Secondly, the sep-
ration of charge transfer and microstructural effects achieved in
he perimeter to cross-sectional area ratio applied in the cylindri-
al case is built upon by the further distinction of microstructural
nfluence in the variable cross-section cases and motivates the
evelopment of parameters that address ohmic losses within the
icrostructure. Such parameters should be able to describe gains

chieved by increasing active surface area, as seen in the well-
intered case, and losses caused by microstructural constrictions
hat detract from performance of poorly sintered electrodes. Finally
nd most notably, the regions of performance overlap between
he well sintered and poorly sintered cases suggests geometric
imilarity between microstructures that motivates the develop-
ent of non-dimensional parameters and scaling relations that can

escribe electrode performance.
The geometric similarity between microstructures described by

he electrochemical fin model was initially explored as a func-
ion of the resistivity ratio. As noted, forms of this parameter
ave been previously introduced in the literature [3,6]. Behavior
f the efficiency and dimensionless base current as functions of
he resistivity ratio is shown in Fig. 5. For the single conical fin,
base and tip radii of 2.0 and 1.75 �m were used. For the peri-

dic structures segment lengths of 0.25, 0.5, 1.0, and 2.0 �m were
onsidered, and a tip radius of 1.75 �m was applied with a sur-
ace charge transfer resistance of 0.6 � cm−2 and ionic conductivity

f 1 S m−1. However, variation of these values led only to minor
ariation in the data in the curves shown, which confirmed simi-
arity based on geometry. The efficiency accounts for ohmic losses
ncurred along the length of the extended structure. While it is
ommon to consider the addition of electrode material as generally
ources 196 (2011) 4695–4704 4701

beneficial to reducing polarization resistance [2,9], this term high-
lights the trade-off between charge transfer and the ohmic losses
incurred by the addition of material and increased constriction
in structures with variations in the microstructural cross-section.
The behavior of the efficiency as a function of the resistivity ratio
reflects this trade-off (Fig. 5a). Here increased ohmic resistance
in the solid phase, either through constrictions or the addition
of material beyond the active length of the electrode, can result
in a less efficient supply of ions to the active surfaces participat-
ing in charge transfer. Conversely, the dimensionless base current
reflects the benefits of extending the active electrode beyond the
electrode–electrolyte plane. The increased active area can lead
to increased charge transfer from the electrode, which results
in a reduced polarization resistance (Fig. 5b). Variations in the
active area for the different geometries considered demonstrate
the importance of accounting for detailed microstructural geome-
try when predicting electrode performance. In the context of the
experimental results shown in Fig. 4, the structures with periodic
geometry tend to have greater resistivity ratios than the cylindri-
cal geometry, which essentially results from increased surface area
per unit volume. These higher resistivity ratios correlate with an
increase in the dimensionless base current, which manifests as a
reduced polarization resistance in some cases (i.e., well sintered
electrodes in general and possibly very thin poorly sintered elec-
trodes).

As is clearly evident from the poorly sintered electrodes shown
in Fig. 4, gains in active surface area will not invariably benefit per-
formance. An expense is incurred in terms of ohmic losses that
result from the addition of material and the constriction of ionic
conduction within the solid phase. This inherent trade-off can be
visualized by following the lead of Costamagna et al. [3] and explor-
ing model predictions over a broad range of resistivity ratios, as
shown in Fig. 6. Here, a set of periodic geometries are considered
using segments with a common base radius of 2 �m and three tip
radii 0.25, 0.75, and 1.75 �m. A segment length of 0.25 �m was
applied, and total length and ionic conductivity were varied to
produce the desired range of resistivity ratios. For the range of
resistivity ratios considered the competing ohmic losses and charge
transfers gains that occur with increasing resistivity ratio can be
seen in the opposing general trends of the efficiency and dimen-
sionless base current. Similar trends may be produced for other
dependent variables. For example, the effectiveness can be related
to the efficiency through appropriate conversion based on known
fin geometry, as implied by Eqs. (26) and (27). For the well sin-
tered (rt = 1.75 �m) and marginal case (rt = 0.75 �m) the efficiency
behavior is comparable. However, for the case with the smallest
tip radius, there is a marked difference. For all three geometries
there is substantial difference in the dimensionless base current.
This suggests that sintering quality might exert a greater influence
over this latter performance metric.

Looking beyond the general trends, several other key insights
can be made about the dependence of the efficiency and dimension-
less base current on the resistivity ratio. As indicated by the regions
marked with Roman numerals, three distinct regimes of transport
can be identified. The first of these regimes (I) is designated by
�io/�ct < 0.1, analogous to the traditional Biot’s number limit for
the dominance of convection over conduction heat transfer, and is
marked by the dominance of charge transfer behavior with min-
imal ohmic losses resulting in a high efficiency. In this transport
regime performance may not be optimal because not enough addi-
tional surface area is added to take full advantage of the charge

transfer gains that could be achieved before incurring excessive
ohmic penalties. Here, resistance to surface charge transfer results
in a low base current (i.e., a high polarization resistance). A con-
stant potential in the electrode structure can be expected for such
geometries. In the second regime (II, from 0.1 < �io/�ct < 10) a bal-
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Fig. 6. Fin efficiency (top) and dimensionless base current (bottom) exhibit three
regimes of behavior defined on the resistivity ratio. In regime I charge transfer dom-
inates, and low ohmic losses result in high efficiency. In regime II charge transfer
and ionic conduction processes are balanced, and electrode performance is best
predicted using models that fully account for both processes. In regime III ionic
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ically by recasting Eq. (20) in terms of the sintering quality and
onduction dominates, and electrode performance can be predicted using basic
ower–law correlations. Performance variations between geometries can be dis-
inguished using the sintering quality.

nce between the charge transfer and ionic conduction is achieved.
lectrodes within this region have thickness values that are close
o previously defined active lengths for SOFC electrodes [11,13].
ince losses are balanced, geometries suitable for optimum active
lectrode layers would likely be found in this transitional transport
egime. The third regime (III) occurs for �io/�ct > 10 and is marked by
he dominance of ionic conduction and ohmic losses over transport.
ypically, thicknesses representative of support electrodes fall into
his transport regime [23–25]. Since the effects of charge transfer
esistance in this regime are reduced, base current values tend to be
igher in this regime. However, focusing on regimes II and III a shift
o a smaller upward slope for the base current can be seen to coin-
ide with a steeper descent in the efficiency. Particularly for regime
II, the rate of decline in performance associated with ohmic losses
an be seen to outstrip the rate of gain in performance associated
ith overall surface charge transfer. Recalling the comparison to
enjo et al. (Fig. 4), the poorly sintered geometries fall in regime III

or a majority of the thickness values investigated (approximately
0–60 �m), whereas the well sintered and cylindrical geometries
an be classified as either regimes I or II for thickness up to 40 �m
or the variable cross-section case and up to 50 �m for the con-

tant cross-section case. From a charge transport perspective, too
uch material has been added to electrodes operating in regime

II. Charge transfer has passed its maximum limit for the given
icrostructural geometry, and additional inactive material only
ources 196 (2011) 4695–4704

adds to ohmic losses. For this regime, addition material provides
primarily structural support.

The behavior for the distinct tip geometries applied to obtain the
results shown in Fig. 6 reveals the influence of the sintering quality
on predicted electrode performance. For the cases shown, the sin-
tering quality (SQ) increases with the tip radius. In terms of both
the efficiency and the dimensionless base current a higher sintering
quality, indicated by a smaller change in cross-sectional area across
the solid structure, results in superior performance. That is, better
connectivity among individual elements comprising the periodic
structures improves the movement of charge through the solid
structure to the active surfaces which produces higher efficiency
and lower polarization resistance.

In the regime dominated by ionic conduction (III), linear behav-
ior on the logarithmic scale suggests that a power–law correlation
may adequately describe electrode performance in terms of both
the resistivity ratio and sintering quality. The cases shown in Fig. 6
were therefore expanded to include geometries with segment
lengths of 0.5, 1.0, and 2.0 �m, and a broader set of studies were per-
formed in further pursuit of such a correlation. The set of calculated
resistivity ratios, sintering qualities, efficiencies, and dimensionless
base currents for the well sintered and marginally sintered cases
were transformed to a logarithmic basis and the resulting data were
fit to a general linear model. The resulting correlations, inclusive of
approximate coefficients and exponents, are shown in Eqs. (30) and
(31). Correlation coefficients (R2) are displayed along with each of
these equations. The poorly sintered case was withheld from the
correlation process at this point in deference to the more qualita-
tive nature of predictions based on the one-dimensional model for
poorly sintered microstructures.

�f =
(

�io

�ct

)−0.49
SQ 0.02; R2 = 0.99 (30)

dϕ∗

dx∗

∣∣∣
x∗=0

= 1.5
(

�io

�ct

)0.55
SQ 0.25; R2 = 0.89 (31)

Several points arise from inspection of these correlations, the
first being that the physical properties play a dominant role in per-
formance via the resistivity ratio. The trade-off between ohmic and
charge transfer losses is again evident in the correlations above as
indicated by the reversal of signs on the exponent in the domi-
nant term, and can be further illustrated by observing the behavior
of the efficiency and dimensionless base current in terms of the
sintering quality, as shown in Fig. 7. Of particular note in these
correlations and in Fig. 7 is that the sintering quality has almost
negligible influence on efficiency, with microstructural geometry
effects largely accounted for in the ratio of the surface area spatial
variation (dAs/dx) and cross sectional area. The sintering quality
only exerts influence for poorly sintered structures. On the other
hand, the dimensionless base current, which determines the per-
formance gained from adding an extended structure to an active
interface, shows a stronger sintering quality influence. This influ-
ence demonstrates that adding a poorly sintered structure to an
active interface results in less effective electrode for charge transfer.

Further insight into the roles of the resistivity ratio and sintering
quality can be gained by considering the exponents applied to the
resistivity ratio and sintering quality terms in Eqs. (30) and (31).
These exponents take very distinct forms, particularly the approxi-
mate square root behavior of the resistivity ratio. Exact square root
dependences on the resistivity ratio can be demonstrated analyt-
resistivity ratio, as shown in Eq. (32). This ordinary differential
equation has the general solution shown in Eq. (33) with ˛1 and
˛2 defined as the roots of the characteristic equation (Eq. (34)).
The constants C1 and C2 can be found by applying the appropriate
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ig. 7. Power–law predictions of electrode performance in regime III further demon-
trate the impact of sintering quality. Efficiency and dimensionless base current
ncrease as sintering quality improves. The latter of these two increases indicates a
eduction in polarization resistance.

oundary conditions.

d2ϕ∗

dx∗2
+ 1

SQ

dϕ∗

dx∗ − �io

�ct
ϕ∗ = 0 (32)

∗(x∗) = C1 exp(˛1x∗) + C2 exp(˛2x∗) (33)

1,2 = 1
2

[
− 1

SQ
±

√
1

SQ 2
+ 4

(
�io

�ct

)]
(34)

Retaining the general form of the solution for simplicity, the
imensionless base current can be defined in terms of the roots
f the characteristic equation, Eq. (35). Furthermore, the efficiency
efined in Eq. (26) can be recast in terms of the dimensionless base
urrent, as shown in Eq. (36). It can be seen from Eqs. (34) and (35)
hat for a well sintered structure (i.e., high sintering quality) the
imensionless base current will reduce to a form proportional to
he square root of the resistivity ratio. For the efficiency, inspection
f the coefficient on the right hand side of Eq. (36) reveals that it
s a close approximation of the inverse of the resistivity ratio. Mul-
iplication of the dimensionless current by this term leads to the
nverse square root dependence and further reduction of the sin-
ering quality’s influence on the efficiency, both seen in Eq. (30).
ince the structures considered for the correlations above retain
ome variation in cross-sectional geometry, the sintering quality
till exerts some influence in both correlations, even when ionic

onduction is dominant and power law behavior is observed. This
emonstration of the exact square root dependence confirms the
rends revealed by the power law correlations for electrode perfor-

ance in regime III. However, more importantly, it also provides
orms of the dimensionless base current and efficiency that allow
ources 196 (2011) 4695–4704 4703

for rapid assessment of electrode performance in all of the transport
regimes indicated in Fig. 6.

dϕ∗

dx∗

∣∣∣
x∗=0

= C1˛1 + C2˛2 (35)

�f = �ioRctAb

Lf Af

dϕ∗

dx∗

∣∣∣
x∗=0

(36)

A final insight that comes from the role of the resistivity ratio
relates to the size of the active region within the SOFC electrode.
Considering the parameter m defined in Eq. (11), an active length
can be defined for the electrochemical fin that is analogous to the
healing length of a thermal fin, Eq. (37). Similar active lengths have
been defined for SOFC electrodes in the literature [11,13]. Note that
the perimeter defines the spatial variation in surface area for the
special case of a constant cross-section fin and has been general-
ized in Eq. (37). The resistivity ratio can then be expressed in terms
of the active length and total electrode thickness, as shown in Eq.
(38). Thus, it can be seen that both the efficiency and dimensionless
base current scale primarily in terms of the ratio of active length to
total electrode thickness. If the total thickness exceeds the active
length, a penalty is extracted through higher ohmic loss incurred
by excess material. However, the addition of material can enhance
the charge transfer capabilities of the electrode, which reduces the
total polarization resistance.

Lact = 1
m

=
[

1
�ioRct

1
Ac

dAs

dx

]−1/2

(37)

�io

�ct
=

L2
f

L2
act

(38)

As noted, the trends in Fig. 6 contain an inflection point near
the active length defined above. The addition of material beyond
this length leads to a greater dominance of ohmic losses associ-
ated with ionic transport because the inactive material increases
resistance. However, such material may fulfill a vital structural
support role. The active length provides a demarcation for tran-
sitioning microstructural design objectives from a transport and
electrochemistry perspective to a structural support perspective.

4. Conclusions

An extended surface modeling concept (the electrochemical
fin) has been applied to explore charge transport within SOFC
electrodes using an analytical modeling approach. This model
represents an advance from existing thin film models in terms
of the phase of interest and the application of a variable cross-
section equation that enables the analytical exploration of the role
of microstructure on performance. Parallels between the model
presented and the thin film approach are strong enough to war-
rant cognizance of thin film model critiques that may apply.
The present work attempts to address one such issue, connectiv-
ity of the ionic conducting phase, through consideration variable
cross-section geometry in solid structures. Drawing from this
approach the model presented is capable of replicating experi-
mentally observed electrode behavior inclusive of sensitivity to
microstructural geometry associated with sintering without rely-
ing on effective conductivity parameters. This capability stands in
contrast to similar models that rely on a constant cross-section
formalism in the governing equation.

One-dimensional models have been explored for electro-

chemical fins of several cross-sectional geometries, providing
the foundation for a general tool that enables prompt perfor-
mance evaluation of electrode microstructures and facilitates
SOFC microstructural design by focusing more detailed modeling
efforts on the most promising microstructures. Insights garnered
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